Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation

نویسندگان

  • Namasivayam Dhenadhayalan
  • King-Chuen Lin
چکیده

Investigations were carried out on the carbon-dots (C-dots) based fluorescent off - on (Fe(3 + )- S2O3(2-)) and on - off (Zn(2 + )- PO4(3-)) sensors for the detection of metal ions and anions. The sensor system exhibits excellent selectivity and sensitivity towards the detection of biologically important Fe(3 + ), Zn(2 + ) metal ions and S2O3(2-), PO4(3-) anions. It was found that the functional group on the C-dots surface plays crucial role in metal ions and anions detection. Inspired by the sensing results, we demonstrate C-dots based molecular logic gates operation using metal ions and anions as the chemical input. Herein, YES, NOT, OR, XOR and IMPLICATION (IMP) logic gates were constructed based on the selection of metal ions and anions as inputs. This carbon-dots sensor can be utilized as various logic gates at the molecular level and it will show better applicability for the next generation of molecular logic gates. Their promising properties of C-dots may open up a new paradigm for establishing the chemical logic gates via fluorescent chemosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube

This paper investigates a novel design of penternary logic gates usingcarbon nanotube field effect transistors (CNTFETs). CNTFET is a suitable candidate forreplacing MOSFET with some useful properties, such as the capability of having thedesired threshold voltage by regulating the diameter of the nanotubes. Multiple-valuedlogic (MVL) such as ternary, quaternary, and penternary is a promising al...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Design and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois

Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...

متن کامل

Double Feynman Gate (F2G) in Quantum- dot Cellular Automata (QCA)

Abstract— Quantum dot Cellular Automata (QCA) is anticipated to allow for extremely dense nano-scale design and implementation of logic circuit over the Complementary Metal Oxide Semiconductor (CMOS). QCA has been considered as a promising alternative to CMOS technology for its lower power consumption, higher scale integration and higher switching frequency. Moreover, the basic element in QCA i...

متن کامل

Future Semiconductor Devices for Multi-Valued Logic Circuit Design

This paper introduces future devices for multi-valued logic implementation. Quantum dot gate field effect transistor (QDGFET) works based on the change in threshold voltage due to stored charge in the quantum dots in the gate region. Quantum dot channel field effect transistor (QDCFET) produces more number of states in their transfer characteristics because of charge flow through the mini-band ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015